Hybridization of evolutionary algorithms and interval analysis for global optimization

Charlie Vanaret
vanaret@cena.fr
Jean-Baptiste Gotteland Nicolas Durand

Journée de présentation des doctorants, Equipe APO
7 septembre 2012
Objectives

\[
\min_{x \in D} f(x) \\
\text{s.t.} \quad g_i(x) \leq 0, \quad i \in \{1, \ldots, p\} \\
\quad h_j(x) = 0, \quad j \in \{1, \ldots, q\}
\]

Objectives

- **difficult optimization problem** in the continuous domain
- find the **global minima**
- **bound** the solutions

using

- a **stochastic** research (Evolutionary Algorithms)
- a **deterministic** research (Interval Branch and Bound Algorithms)

in a **cooperative** way
1. Evolutionary algorithms

2. Interval analysis

3. Cooperative hybrid algorithm

4. Experimental results
1 Evolutionary algorithms

2 Interval analysis

3 Cooperative hybrid algorithm

4 Experimental results
Evolutionary algorithms (EA)

Based on the **theory of evolution** (selection, mutation, crossover)

- global optimization stochastic algorithms
- iteratively improve a population of individuals x
- adaptation criterion $f(x)$

EA used at ENAC/MAIAA:

- GA, PSO, ACO
- DE: combines the positions of existing individuals to create new ones

Efficiency, no guarantee of optimality
Evolutionary algorithms
1 Evolutionary algorithms

2 Interval analysis

3 Cooperative hybrid algorithm

4 Experimental results
Interval analysis

Numerical analysis method to bound round-off errors [Moo66]

\[
\begin{align*}
[a, b] + [c, d] &= [a + c, b + c] \\
[a, b] - [c, d] &= [a - d, b - c] \\
[a, b] \times [c, d] &= \min(ac, ad, bc, bd), \max(ac, ad, bc, bd)] \\
[a, b] / [c, d] &= [a, b] \times [1/d, 1/c] \text{ if } 0 \notin [c, d]
\end{align*}
\]

Interval arithmetic (IA)

- extends to intervals \{+, −, *, /\}, √, exp, cos, ...
- an inclusion function \(F \) of \(f \) yields a rigorous enclosure of \(f(X) \)
- outward rounding
 \(\rightsquigarrow \) development of interval arithmetic library in OCaml [AGV+12]
Interval analysis

Dependency problem: \(X = [-5, 5] \)

\[
X - X = [-10, 10] \neq [0, 0] \\
= X - Y \text{ with } X = [-5, 5] \text{ and } Y = [-5, 5] \\
X \times X = [-25, 25] \supset [0, 25] = X^2
\]

Decorrelation of variables ⇒ **overestimation** of the image

Optimal image obtained if

- \(F \) is continuous over the box
- the variables appear only once in the expression
Guaranteed bounds on solutions of optimization problems [Han92]

Until comprehensive exploration of the search-space

- keep track of best upper bound \tilde{f} of the global minimum f^*
- **divide** the search-space into subspaces X_i
- **evaluate** $F(X_i)$ and update \tilde{f}
- discard X_i if it cannot contain the optimal solution: $\tilde{f} < F(X_i)$
- store X_i if precision reached

Generally not efficient for large size problems
Interval Branch and Bound Algorithms
1. Evolutionary algorithms

2. Interval analysis

3. Cooperative hybrid algorithm

4. Experimental results
Cooperative hybrid algorithm [ADGG12]

Stochastic (EA) and deterministic (IBBA) search in parallel
- EA’s communicates best solution to improve IBBA’s bound: speeds up the cutting process
- IBBA discards parts of the search-space: prevent EA’s individuals from being trapped in a local minimum

Implementation (3 threads)
- IBBA thread and EA thread run independently
- exchange information through shared memory
- third thread updates elements of IBBA and EA
Cooperative hybrid algorithm

IBBA thread
- receives EA’s best element → update \(\tilde{f} \)
- stores its best element in shared memory

EA thread
- stores its best element in shared memory
- receives IBBA’s best element → replace the worst individual

Update thread
- cleans up the list of remaining boxes in IBBA
- projects individuals outside the remaining domain onto closest box
Improvement

Issue: in basic hybrid algorithm, **slow convergence** of IBBA

Use of **constraint propagation** techniques to

- contract (narrow bounds) intervals
- discard part of the search-space
- prove the existence of a solution

HC4-revise [BGGP99], Interval Newton, Mohc [ANT10] (monotonicity) (require analytical expression)

Current work

- refine aforementioned techniques
- use constrained propagation for unconstrained (!) optimization problems
HC4-revise algorithm

Contract a box, given a constraint

- bottom-up: evaluation phase (IA)
- top-down: narrowing phase (projection functions)

\[(Y + X + Z)^2 + 3(X + Z) = 30\] (Source: G. Trombettoni)
1. Evolutionary algorithms

2. Interval analysis

3. Cooperative hybrid algorithm

4. Experimental results
Optima of Michalewicz function (precision: 10^{-13})

\[
f_n(x) = -\sum_{i=1}^{n} \sin(x_i) \left[\sin \left(\frac{ix_i^2}{\pi} \right) \right]^{20}
\]

- $f^*_20 = -19.6370$ given by metaheuristic (not proved) [Mis06]
- $f^*_12 = -11.64957$ proved by [ADGG12] in 6000s
Optima of Michalewicz function (precision: 10^{-13})

$$f_n(x) = -\sum_{i=1}^{n} \sin(x_i) \left[\sin \left(\frac{ix_i^2}{\pi} \right) \right]^{20}$$

- $f_{20}^* = -19.6370$ given by metaheuristic (not proved) [Mis06]
- $f_{12}^* = -11.64957$ proved by [ADGG12] in 6000s

Optimal results obtained by hybrid algorithm + HC4-revise ($f \leq \tilde{f}$)

<table>
<thead>
<tr>
<th>n</th>
<th>f_n^*</th>
<th>CPU time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>-11.64957499871478</td>
<td>0.285883</td>
</tr>
<tr>
<td>13</td>
<td>-12.64781798559795</td>
<td>0.377464</td>
</tr>
<tr>
<td>14</td>
<td>-13.64781798559795</td>
<td>0.440263</td>
</tr>
<tr>
<td>15</td>
<td>-14.64640019031939</td>
<td>0.616653</td>
</tr>
<tr>
<td>16</td>
<td>-15.64186481894995</td>
<td>0.677576</td>
</tr>
<tr>
<td>17</td>
<td>-16.64082823279473</td>
<td>0.955641</td>
</tr>
<tr>
<td>18</td>
<td>-17.64082823279473</td>
<td>1.133094</td>
</tr>
<tr>
<td>19</td>
<td>-18.63995087502383</td>
<td>1.312715</td>
</tr>
<tr>
<td>20</td>
<td>-19.63701359934939</td>
<td>1.961957</td>
</tr>
</tbody>
</table>
Optima of Michalewicz function

Performance comparison for $n = 12$

![Graph showing performance comparison](image)

(e) Start of convergence

(f) End of convergence
Experimental results

Air traffic conflict resolution with speed maneuvers

Conflict in en-route traffic

- risk of loss of separation between trajectory predictions
- necessity to maneuver the aircraft (lateral, vertical, \textbf{speed})
- separation constraint between aircraft i and j:
 \[S_h \leq \text{dist}(p_i(t), p_j(t)), \forall t \]
Air traffic conflict resolution with speed maneuvers

Aircraft \(i \)
- initial position \(\vec{p}_i^0 \) and initial velocity \(\vec{v}_i \)
- speed change \(x_i : x_i \vec{v}_i \)
- \(x_i \in [x_{\text{min}}, x_{\text{max}}], \ x_{\text{min}} \leq 1 \leq x_{\text{max}} \)

Constrained optimization problem

\[
\min_{x \in D} \quad \sum_{i=1}^{n} (x_i - 1)^2
\]

\[
\text{s.t.} \quad g(x_i, x_j) = A\left(\frac{x_j}{x_i} + B\right)^2 + C \leq 0, \quad i < j
\]

with \((A, B, C) \) functions of \(\vec{p}_i^0, \vec{p}_j^0, \vec{v}_i, \vec{v}_j \) and \(S_h \)
Air traffic conflict resolution with speed maneuvers

n aircraft

- converge towards the center of a semi-circle
- $r = 400$ NM, $v = 400$ kts, $[x_{min}, x_{max}] = [0.8, 1.2]$

<table>
<thead>
<tr>
<th>n</th>
<th>ϵ_x</th>
<th>ϵ_f</th>
<th>f^*_n</th>
<th>CPU time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1e-9</td>
<td>1e-9</td>
<td>2.930710031594970e-03</td>
<td>319.57</td>
</tr>
<tr>
<td>7</td>
<td>1e-6</td>
<td>1e-6</td>
<td>4.602953032944257e-03</td>
<td>42.67</td>
</tr>
<tr>
<td>8</td>
<td>1e-6</td>
<td>1e-6</td>
<td>6.822228746875922e-03</td>
<td>189.14</td>
</tr>
</tbody>
</table>
Conclusion and perspectives

Hard task to find global optimum of highly combinatorial problems

▶ deterministic methods do not converge within reasonable time
▶ stochastic methods do not guarantee optimality

We have shown that the hybrid algorithm

▶ accelerates EA’s convergence
▶ proves the optimality of the solution

Improvement of previous results (deterministic methods)

▶ benchmark functions
▶ aeronautical applications
Conclusion and perspectives

To be developed in future work

- implement Mohc algorithm
- better computation of lower bound
- develop use of CP techniques
- improve cooperation between EA and IBBA
 - which box to process
 - which variable to bisect
 - where to bisect
 using the distribution of EA’s individuals
- conflict resolution problem: handle speed uncertainty (with... intervals)

Hybridization of evolutionary algorithms and interval analysis for global optimization

Charlie Vanaret
vanaret@cena.fr
Jean-Baptiste Gotteland Nicolas Durand

Journée de présentation des doctorants, Equipe APO
7 septembre 2012